Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей.
Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание.
Сложение и вычитание алгебраических дробей
Алгебраические дроби складывают и вычитают по правилам сложения и вычитания обыкновенных дробей.
Сложение алгебраических дробей
Запомните! Складывать можно только дроби с одинаковыми знаменателями!
Нельзя складывать дроби без преобразований
Можно складывать дроби
При сложении алгебраических дробей с одинаковыми знаменателями:
- числитель первой дроби складывается с числителем второй дроби;
- знаменатель остаётся прежним.
Рассмотрим пример сложения алгебраических дробей.
Так как знаменатель у обеих дробей «2а», значит, дроби можно сложить.
Сложим числитель первой дроби с числителем второй дроби, а знаменатель оставим прежним. При сложении дробей в полученном числителе приведем подобные.
Вычитание алгебраических дробей
Запомните! Вычитать можно только дроби с одинаковыми знаменателями!
При вычитании алгебраических дробей с одинаковыми знаменателями:
- из числителя первой дроби вычитается числитель второй дроби.
- знаменатель остаётся прежним.
Важно! Обязательно заключите в скобки весь числитель вычитаемой дроби.
Иначе вы сделаете ошибку в знаках при раскрытии скобок вычитаемой дроби.
Рассмотрим пример вычитания алгебраических дробей.
Так как у обеих алгебраических дробей знаменатель «2с», значит, эти дроби можно вычитать.
Вычтем из числителя первой дроби «(a + d)» числитель второй дроби «(a − b)». Не забудем заключить числитель вычитаемой дроби в скобки. При раскрытии скобок используем правило раскрытия скобок.
Приведение алгебраических дробей к общему знаменателю
Рассмотрим другой пример. Требуется сложить алгебраические дроби.
В таком виде сложить дроби нельзя, так как у них разные знаменатели. Прежде чем складывать алгебраические дроби их необходимо привести к общему знаменателю.
Правила приведения алгебраических дробей к общему знаменателю очень похожи на правила приведения к общему знаменателю обыкновенных дробей. .
В итоге мы должны получить многочлен, который без остатка разделится на каждый прежний знаменатель дробей.
Чтобы привести алгебраические дроби к общему знаменателю необходимо сделать следующее:
- Работаем с числовыми коэффициентами. Определяем НОК (наименьшее общее кратное) для всех числовых коэффициентов.
- Работаем с многочленами. Определяем все различные многочлены в наибольших степенях.
- Произведение числового коэффициента и всех различных многочленов в наибольших степенях и будет общим знаменателем.
- Определяем, на что нужно умножить каждую алгебраическую дробь, чтобы получить общий знаменатель.
Вернемся к нашему примеру.
Рассмотрим знаменатели «15a» и «3» обеих дробей и найдем для них общий знаменатель.
Работаем с числовыми коэффициентами. Находим НОК (наименьшее общее кратное — это число, которое без остатка делится на каждый числовый коэффициент). Для «15» и «3» — это «15».
Работаем с многочленами. Необходимо перечислить все многочлены в наибольших степенях. В знаменателях «15a» и «5» есть только один одночлен — «а».
Перемножим НОК из п.1 «15» и одночлен «а» из п.2. У нас получится «15a». Это и будет общим знаменателем.
Для каждой дроби зададим себе вопрос: «На что нужно умножить знаменатель этой дроби, чтобы получить «15a»?».
Рассмотрим первую дробь. В этой дроби и так знаменатель «15a», значит, ее не требуется ни на что умножать.
Рассмотрим вторую дробь. Зададим вопрос: «На что нужно умножить «3», чтобы получить «15a»?» Ответ — на «5a».
При приведении к общему знаменателю дроби умножаем на «5a» и числитель, и знаменатель.
Сокращенную запись приведения алгебраической дроби к общему знаменателю можно записать через «домики».
Для этого держим в уме общий знаменатель. Над каждой дробью сверху «в домике» пишем, на что умножаем каждую из дробей.
Теперь, когда у дробей одинаковые знаменатели, дроби можно сложить.
Рассмотрим пример вычитания дробей с разными знаменателями.
В таком виде вычитать дроби нельзя, так как у них разные знаменатели. Чтобы вычесть дроби, необходимо привести их к общему знаменателю.
Рассмотрим знаменатели «(x − y)» и «(x + y)» обеих дробей и найдем для них общий знаменатель.
Работаем с числовыми коэффициентами. Числовых коэффициентов в знаменателях нет, поэтому переходим к многочленам.
Работаем с многочленами. Находим все различные многочлены из знаменателей в наибольших степенях и перемножаем их.
Важно! Многочлены необходимо рассматривать целиком! Для удобства заключайте целый многочлен в скобки.
У нас есть два различных многочлена в знаменателях «(x − y)» и «(x + y)». Их произведение будет общим знаменателем, т.е. «(x − y)(x + y)» — общий знаменатель.
Теперь дроби можно вычитать, т.к. у них одинаковый знаменатель.
В некоторых примерах, чтобы привести алгебраические дроби к общему знаменателю, нужно использовать формулы сокращенного умножения.
Рассмотрим пример сложения алгебраических дробей, где нам потребуется использовать формулу разности квадратов.
В первой алгебраической дроби знаменатель «(p2 − 36)». Очевидно, что к нему можно применить формулу разности квадратов.
После разложения многочлена «(p2 − 36)» на произведение многочленов «(p + 6)(p − 6)» видно, что в дробях повторяется многочлен «(p + 6)». Значит, общим знаменателем дробей будет произведение многочленов «(p + 6)(p − 6)».
Важно! Прежде чем приводить многочлены к общему знаменателю, попытайтесь использовать формулы сокращённого умножения или вынесение общего множителя за скобки.
Примеры сложения и вычитания дробей с разными знаменателями с использованием формул сокращенного умножения.
Сложение и вычитание алгебраических дробей с вынесением общего множителя за скобки
На первый взгляд одинаковых многочленов в обеих дробях нет. Вынесем общий множитель «а» за скобки в обоих знаменателях.
После вынесения общего множителя «а» за скобки, в обоих знаменателях появился одинаковый одночлен «а». Значит, общий знаменатель для обеих дробей будет выглядеть так: «а(а + 1)(b + 1)».
Сложение алгебраической дроби с одночленом или числом
Рассмотрим пример. Требуется сложить алгебраическую дробь с одночленом (буквой).
Чтобы сложить одночлен или число с алгебраической дробью, нужно представить одночлен в виде дроби со знаменателем «1».
Представим одночлен «а» как алгебраическую дробь со знаменателем «1».
Подобное действие можно сделать, так как при делении на единицу получается тот же самый одночлен.
Теперь приведем алгебраические дроби к общему знаменателю «(а − 1)» и решим пример.
Источник: http://math-prosto.ru/?page=pages/algebraic_fractions/addition_and_subtraction_algebraic_fractions.php
Сложение и вычитание алгебраических дробей: правила, примеры
На конкретных примерах поясним каждый шаг поиска решения задач.
Действия сложения и вычитания при одинаковых знаменателях
Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.
К примеру: 37+27=3+27=57 и 511-411=5-411=111.
Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.
Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей — новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).
Укажем пример применения сформулированного правила.
Пример 1
Заданы алгебраические дроби: x2+2·x·y-5×2·y-2 и 3-x·yx2·y-2. Необходимо осуществить их сложение.
Решение
Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.
Сложив многочлены, являющиеся числителями исходных дробей, получим: x2+2·x·y−5+3−x·y=x2+(2·x·y−x·y)−5+3=x2+x·y−2.
Тогда искомая сумма будет записана как: x2+x·y-2×2·y-2.
В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:
x2+2·x·y-5×2·y-2+3-x·yx2·y-2=x2+2·x·y-5+3-x·yx2·y-2=x2+x·y-2×2·y-2
Ответ: x2+2·x·y-5×2·y-2+3-x·yx2·y-2=x2+x·y-2×2·y-2.
Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.
Пример 2
Необходимо вычесть из алгебраической дроби xx2-4·y2 дробь 2·yx2-4·y2.
Решение
Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:
xx2-4·y2-2·yx2-4·y2=x-2·yx2-4·y2
Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:
x-2·yx2-4·y2=x-2·y(x-2·y)·(x+2·y)=1x+2·y
Ответ: xx2-4·y2-2·yx2-4·y2=1x+2·y.
По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:
1×5+2·x3-1+3·x-x4x5+2·x3-1-x2x5+2·x3-1-2·x3x5+2·x3-1=1+3·x-x4-x2-2·x3x5+2·x3-1
Действия сложения и вычитания при разных знаменателях
Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.
К примеру, 25+13=615+515=1115 или 12-37=714-614=114.
Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:
- исходные дроби привести к общему знаменателю;
- выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.
Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.
Приведение алгебраических дробей к общему знаменателю
Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:
- сначала определяем общий знаменатель алгебраических дробей;
- затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
- последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
Пример 3
Заданы алгебраические дроби: a+22·a3-4·a2, a+33·a2-6·a и a+14·a5-16·a3. Необходимо привести их к общему знаменателю.
Решение
Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2·a3−4·a2=2·a2·(a−2), 3·a2−6·a=3·a·(a−2) и 4·a5−16·a3=4·a3·(a−2)·(a+2). Отсюда можем записать общий знаменатель: 12·a3·(a−2)·(a+2).
Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:
- для первой дроби: 12·a3·(a−2)·(a+2):(2·a2·(a−2))=6·a·(a+2);
- для второй дроби: 12·a3·(a−2)·(a+2):(3·a·(a−2))=4·a2·(a+2);
- для третьей дроби:12·a3·(a−2)·(a+2):(4·a3·(a−2)·(a+2))=3.
Следующий шаг — умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:
a+22·a3-4·a2=(a+2)·6·a·(a+2)(2·a3-4·a2)·6·a·(a+2)=6·a·(a+2)212·a3·(a-2)·(a+2)a+33·a2-6·a=(a+3)·4·a2·(a+2)3·a2-6·a·4·a2·(a+2)=4·a2·(a+3)·(a+2)12·a3·(a-2)·(a+2)a+14·a5-16·a3=(a+1)·3(4·a5-16·a3)·3=3·(a+1)12·a3·(a-2)·(a+2)
Ответ: a+22·a3-4·a2=6·a·(a+2)212·a3·(a-2)·(a+2);a+33·a2-6·a=4·a2·(a+3)·(a+2)12·a3·(a-2)·(a+2);a+14·a5-16·a3=3·(a+1)12·a3·(a-2)·(a+2).
Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.
Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.
Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.
Пример 4
Заданы алгебраические дроби: 1-2·xx2+x и 2·x+5×2+3·x+2. Необходимо осуществить действие их сложения.
Решение
Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x2+x=x·(x+1), а x2+3·x+2=(x+1)·(x+2), т.к. корни квадратного трехчлена x2+3·x+2 это числа: -1 и -2.
Определяем общий знаменатель: x·(x+1)·(x+2), тогда дополнительные множители будут: x+2 и –x для первой и второй дробей соответственно.
Таким образом: 1-2·xx2+x=1-2·xx·(x+1)=(1-2·x)·(x+2)x·(x+1)·(x+2)=x+2-2·x2-4·xx·(x+1)·x+2=2-2·x2-3·xx·(x+1)·(x+2) и 2·x+5×2+3·x+2=2·x+5(x+1)·(x+2)=2·x+5·x(x+1)·(x+2)·x=2·x2+5·xx·(x+1)·(x+2)
Теперь сложим дроби, которые мы привели к общему знаменателю:
2-2·x2-3·xx·(x+1)·(x+2)+2·x2+5·xx·(x+1)·(x+2)==2-2·x2-3·x+2·x2+5·xx·(x+1)·(x+2)=2·2·xx·(x+1)·(x+2)
Полученную дробь возможно сократить на общий множитель x+1:
2+2·xx·(x+1)·(x+2)=2·(x+1)x·(x+1)·(x+2)=2x·(x+2)
И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:
2x·(x+2)=2×2+2·x
Запишем ход решения кратко в виде цепочки равенств:
1-2·xx2+x+2·x+5×2+3·x+2=1-2·xx·(x+1)+2·x+5(x+1)·(x+2)==1-2·x·(x+2)x·x+1·x+2+2·x+5·x(x+1)·(x+2)·x=2-2·x2-3·xx·(x+1)·(x+2)+2·x2+5·xx·(x+1)·(x+2)==2-2·x2-3·x+2·x2+5·xx·(x+1)·(x+2)=2·x+1x·(x+1)·(x+2)=2x·(x+2)=2×2+2·x
Ответ: 1-2·xx2+x+2·x+5×2+3·x+2=2×2+2·x
Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.
Пример 5
Необходимо осуществить вычитание дробей: 2113·x-221 и 3·x-117-2·x.
Решение
Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:
2113·x-221=243·x-221=243·x-114 и 3·x-117-2·x=3·x-1-2·x-114
Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.
Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 34, а второй на -12, тогда получим:
243·x-114=34·234·43·x-114=32x-114 и 3·x-1-2·x-114=-12·3·x-1-12·-2·x-114=-32·x+12x-114.
Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14:
32x-114=14·3214·x-114=2114·x-1 и -32·x+12x-114=14·-32·x+12x-114=-21·x+714·x-1.
Наконец, выполним требуемое в условии задачи действие – вычитание:
2113·x-221-3·x-117-2·x=2114·x-1—21·x+714·x-1=21—21·x+714·x-1=21·x+1414·x-1
Ответ: 2113·x-221-3·x-117-2·x=21·x+1414·x-1.
Сложение и вычитание алгебраической дроби и многочлена
Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1.
Пример 6
Необходимо произвести сложение многочлена x2−3 с алгебраической дробью 3·xx+2.
Решение
Запишем многочлен как алгебраическую дробь со знаменателем 1: x2-31
Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:
x2-3+3·xx+2=x2-31+3·xx+2=x2-3·(x+2)1·x+2+3·xx+2==x3+2·x2-3·x-6x+2+3·xx+2=x3+2·x2-3·x-6+3·xx+2==x3+2·x2-6x+2
Ответ: x2-3+3·xx+2=x3+2·x2-6x+2.
Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/slozhenie-i-vychitanie-algebraicheskih-drobej/